
Table of Contents
Effective Use of Resources with PBS...1

Streamlining File Transfers from Pleiades Compute Nodes to Lou.............................1
Avoiding Job Failure from Overfilling /PBS/spool..2
Running Multiple Serial Jobs to Reduce Walltime...3
Checking the Time Remaining in a PBS Job from a Fortran Code.............................6

Effective Use of Resources with PBS

Streamlining File Transfers from Pleiades Compute Nodes
to Lou

Some users prefer to streamline the storage of files (created during a job run) to Lou, within
a PBS job. Since Pleiades compute nodes do not have network access to the outside
world, all file transfers to Lou within a PBS job must go through the front-ends (pfe[1-12],
bridge[1,2]) first.

Here is an example of what you can add to your PBS script to accomplish this:

Ssh to a front-end node (for example, bridge2) and create a directory on Lou where
the files are to be copied.

ssh -q bridge2 "ssh -q lou mkdir -p $SAVDIR"
Here, $SAVDIR is assumed to have been defined earlier in the PBS script. Note the
use of -q for quiet-mode, and double quotes so that shell variables are expanded
prior to the ssh command being issued.

1.

Use scp via bridge[1,2] to transfer the files.2.

ssh -q bridge2 "scp -q $RUNDIR/* lou:$SAVDIR"
Here, $RUNDIR is assumed to have been defined earlier in the PBS script.

Effective Use of Resources with PBS 1

Avoiding Job Failure from Overfilling /PBS/spool

Before a PBS job is completed, its error and output files are kept in the /PBS/spool directory
of the first node of your PBS job. The space under /PBS/spool is limited, however, and
when it fills up, any job that tries to write to /PBS/spool may die. To prevent this, you should
not write large amount of contents in the PBS output/error files.

If your executable normally produces a lot of output to the screen, you should redirect its
output in your PBS script. For example:

#PBS ...
mpiexec a.out > output

To see the contents of your PBS output/error files before your job completes, follow the two
steps below:

Find out the first node of your PBS job using "-W o=+rank0" for qstat:1.

%qstat -u your_username -W o=+rank0
JobID User Queue Jobname TSK Nds wallt S wallt Eff Rank0
------------- ------ ------ -------- ---- --- -------- - -------- ---- ---------
868819.pbspl1 zsmith long ABC 512 64 5d+00:00 R 3d+08:39 100% r162i0n14

This shows that the first node is r162i0n14.

Log in to the first node and cd to /PBS/spool to find your PBS stderr/out file(s). You
can view the content of these files using vi or view.

2.

%ssh r162i0n14
%cd /PBS/spool
%ls -lrt
-rw------- 1 zsmith a0800 49224236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.OU
-rw------- 1 zsmith a0800 1234236 Aug 2 19:33 868819.pbspl1.nas.nasa.gov.ER

Avoiding Job Failure from Overfilling /PBS/spool 2

Running Multiple Serial Jobs to Reduce Walltime

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

Running Multiple Serial Jobs to Reduce Walltime 3

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

Running Multiple Serial Jobs to Reduce Walltime 4

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Running Multiple Serial Jobs to Reduce Walltime 5

Checking the Time Remaining in a PBS Job from a Fortran
Code

DRAFT

This article is being reviewed for completeness and technical accuracy.

During job execution, sometimes it is useful to find out the amount of time remaining for
your PBS job. This allows you to decide if you want to gracefully dump restart files and exit
before PBS kills the job.

If you have an MPI code, you can call MPI_WTIME and see if the elapsed walltime has
exceeded some threshold to decide if the code should go into the shutdown phase.

For example,

 include "mpif.h"

 real (kind=8) :: begin_time, end_time

 begin_time=MPI_WTIME()
 do work
 end_time = MPI_WTIME()

 if (end_time - begin_time > XXXXX) then
 go to shutdown
 endif

In addition, the following library has been made available on Pleiades for the same
purpose:

/u/scicon/tools/lib/pbs_time_left.a

To use this library in your Fortran code, you need to:

Modify your Fortran code to define an external subroutine and an integer*8 variable

 external pbs_time_left
 integer*8 seconds_left

1.

Call the subroutine in the relevant code segment where you want the check to be
performed

 call pbs_time_left(seconds_left)
 print*,"Seconds remaining in PBS job:",seconds_left

2.

Checking the Time Remaining in a PBS Job from a Fortran Code 6

 The return value from pbs_time_left is only accurate to within a minute or two.

Compile your modified code and link with the above library using, for example

LDFLAGS=/u/scicon/tools/lib/pbs_time_left.a

3.

Checking the Time Remaining in a PBS Job from a Fortran Code 7

	Table of Contents
	Effective Use of Resources with PBS
	Streamlining File Transfers from Pleiades Compute Nodes to Lou
	Avoiding Job Failure from Overfilling /PBS/spool
	Running Multiple Serial Jobs to Reduce Walltime
	Checking the Time Remaining in a PBS Job from a Fortran Code

